A New Decision Tree for Recognition of Persian Handwritten Characters
نویسندگان
چکیده
In this paper a binary decision tree, based on Neural Networks, Support Vector Machine and K-Nearest Neighbor is employed and presented for recognition of Persian handwritten isolated digits and characters. In the proposed method, a part of the training data is divided into two clustersusing a clustering algorithm, and this process continues until each subtree reaches clusters with optimum clustering, where the tree leaves are the final obtained clusters. According to the clustering results, classifiers such as ANN and SVM can perform correctly, therefore the decision tree can be built. A part of the test data is selected as validation data and in each node of the tree, a classifier with the highest recognition accuracy on validation data is selected. Recognition accuracy at 8, 20, and 33 clusters have been evaluated and compared with other existing methods. Recognition accuracy of 98. 72% and 97. 3% on IFHCDB database is obtained respectivelywhen 8-class and 20-class problems is assumed. Again 98. 9% accuracy on HODA database is achieved.
منابع مشابه
Improvement of Random Forest Classifier through Localization of Persian Handwritten OCR
The random forest (RF) classifier is an ensemble classifier derived from decision tree idea. However the parallel operations of several classifiers along with use of randomness in sample and feature selection has made the random forest a very strong classifier with accuracy rates comparable to most of currently used classifiers. Although, the use of random forest on handwritten digits has been ...
متن کاملA Novel Approach to Recognition of the Isolated Persian Characters using Decision Tree
Optical Character Recognition (OCR) is an area of research that has attracted the interest of researchers for the past forty years. Although the subject has been the center topic for many researchers for years, it remains one of the most challenging and exciting areas in pattern recognition. Because of the cursive nature of Persian language, recognition of its characters is more difficult than ...
متن کاملIsolated Persian/Arabic handwriting characters: Derivative projection profile features, implemented on GPUs
For many years, researchers have studied high accuracy methods for recognizing the handwriting and achieved many significant improvements. However, an issue that has rarely been studied is the speed of these methods. Considering the computer hardware limitations, it is necessary for these methods to run in high speed. One of the methods to increase the processing speed is to use the computer pa...
متن کاملOn-line Recognition of Arabic Handwritten Characters
In this study, a new approach for the recognition of isolated handwritten Arabic characters is presented. The proposed method places a 5x5 grid on the character to extract the features needed for the recognition step. These features are calculated based on grid calculations. Then these features are feed to the decision tree to classify the character into one of the 28 classes. The classificatio...
متن کاملPersian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012